Premium Only Content
Typical Decoding for Natural Language Generation (Get more human-like outputs from language models!)
#deeplearning #nlp #sampling
Modern language models like T5 or GPT-3 achieve remarkably low perplexities on both training and validation data, yet when sampling from their output distributions, the generated text often seems dull and uninteresting. Various workarounds have been proposed, such as top-k sampling and nucleus sampling, but while these manage to somewhat improve the generated samples, they are hacky and unfounded. This paper introduces typical sampling, a new decoding method that is principled, effective, and can be implemented efficiently. Typical sampling turns away from sampling purely based on likelihood and explicitly finds a trade-off between generating high-probability samples and generating high-information samples. The paper connects typical sampling to psycholinguistic theories on human speech generation, and shows experimentally that typical sampling achieves much more diverse and interesting results than any of the current methods.
Sponsor: Fully Connected by Weights & Biases
https://wandb.ai/fully-connected
OUTLINE:
0:00 - Intro
1:50 - Sponsor: Fully Connected by Weights & Biases
4:10 - Paper Overview
7:40 - What's the problem with sampling?
11:45 - Beam Search: The good and the bad
14:10 - Top-k and Nucleus Sampling
16:20 - Why the most likely things might not be the best
21:30 - The expected information content of the next word
25:00 - How to trade off information and likelihood
31:25 - Connections to information theory and psycholinguistics
36:40 - Introducing Typical Sampling
43:00 - Experimental Evaluation
44:40 - My thoughts on this paper
Paper: https://arxiv.org/abs/2202.00666
Code: https://github.com/cimeister/typical-...
Abstract:
Despite achieving incredibly low perplexities on myriad natural language corpora, today's language models still often underperform when used to generate text. This dichotomy has puzzled the language generation community for the last few years. In this work, we posit that the abstraction of natural language as a communication channel (à la Shannon, 1948) can provide new insights into the behaviors of probabilistic language generators, e.g., why high-probability texts can be dull or repetitive. Humans use language as a means of communicating information, and do so in a simultaneously efficient and error-minimizing manner; they choose each word in a string with this (perhaps subconscious) goal in mind. We propose that generation from probabilistic models should mimic this behavior. Rather than always choosing words from the high-probability region of the distribution--which have a low Shannon information content--we sample from the set of words with information content close to the conditional entropy of our model, i.e., close to the expected information content. This decision criterion can be realized through a simple and efficient implementation, which we call typical sampling. Automatic and human evaluations show that, in comparison to nucleus and top-k sampling, typical sampling offers competitive performance in terms of quality while consistently reducing the number of degenerate repetitions.
Authors: Clara Meister, Tiago Pimentel, Gian Wiher, Ryan Cotterell
Links:
Merch: store.ykilcher.com
TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yann...
LinkedIn: https://www.linkedin.com/in/ykilcher
BiliBili: https://space.bilibili.com/2017636191
If you want to support me, the best thing to do is to share out the content :)
If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannick...
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n
-
13:19
Misha Petrov
2 hours agoDISGUSTING! TikTok Leftists MOCK RFK Jr.’s Disorder While He EXPOSES Big Pharma
9.29K2 -
1:01:20
The Dan Bongino Show
5 hours agoThe Tragic Consequences Of DEI (Ep. 2413) - 01/31/2025
645K1.01K -
1:03:38
The Rubin Report
4 hours agoTulsi Gabbard Catches Her Critics Off Guard with Her Blistering Reaction to False Smears
105K89 -
1:01:33
Dr. Eric Berg
4 days agoThe Dr. Berg Show LIVE January 31, 2025
63.1K3 -
1:40:05
Benny Johnson
3 hours agoSHOCK: New Plane Crash Video REVEALS Horrifying Truth About Tragedy | 'This was Preventable!'
113K130 -
2:03:20
LFA TV
18 hours agoTIME FOR TARIFFS! | LIVE FROM AMERICA 1.31.25 11am
55.7K29 -
1:04:53
The Big Mig™
16 hours agoGlobal Finance Forum From Bullion to Borders
31.6K4 -
1:27:59
The Shannon Joy Show
4 hours ago🔥🔥J6 HORROR - Live Exclusive With J6 Political Prisoner & Advocate John Strand. Now The Battle For JUSTICE Begins.🔥🔥
29.8K2 -
31:18
Tudor Dixon
4 hours agoSelena Gomez's Fake Tears with Sharla McBride | The Tudor Dixon Podcast
23.1K2 -
1:40:58
Steven Crowder
5 hours agoHow Future FBI Director Kash Patel Bodied Every Hater in his Hearing & Even Dropped a Hard R
317K196