Ceva's theorem | plane geometry | intermediate level

3 months ago
9

Episode 82.

Ceva's theorem | plane geometry | intermediate level.

Branch of mathematics: plane geometry.
Difficulty level: intermediate.

Theorem. Let $ABC$ be a triangle. Let $D$, $E$, $F$ be points on the lines $BC$, $CA$, $AB$ respectively. Then the lines $AD$, $BE$, $CF$ intersect at a single point or all 3 are parallel to each other if and only if $\frac{\overrightarrow{BD}}{\overrightarrow{DC}} \cdot \frac{\overrightarrow{CE}}{\overrightarrow{EA}} \cdot \frac{\overrightarrow{AF}}{\overrightarrow{FB}} = 1$.

Mathematics. Geometry. Plane geometry.
#Mathematics #Geometry #PlaneGeometry

The same video on YouTube:
https://youtu.be/ooUZNVOJAtw

The same video on Telegram:
https://t.me/mathematical_bunker/106

Loading comments...