Premium Only Content
2.1.1.2 Central Tendency | Median & Mode | Frequency | Grouped & Ungrouped data
In this video, you will get the idea of Central Tendency, Median & Mode, Frequency and Grouped & Ungrouped data.
-----------------------------------------------------------------------------
Median: Value of the variable which divides the whole distribution into two equal parts
Median class: The class in which the (𝑛/2)^𝑡ℎ cum. frequency falls. If 𝑛/2 is not present, 𝑛/2+1 will be considered to determine median class.
-----------------------------------------------------------------------------
Property 1: Number of the observations below and above the median is same.
Property 2: Median is not affected by extremely large or extremely small values or by open end class intervals.
When median is useful:
Useful when the distribution is skewed (asymmetric)
Merits of Median
1. Not affected by extreme values
2. Can be calculated for open end classes
3. Can be calculated even if the other classes are of unequal width
Demerits of Median
Not rigidly defined (a distribution may have more than one mode)
-----------------------------------------------------------------------------
1. For Ungrouped Data (Method 1)
If 𝑥_1,𝑥_2,…,𝑥_𝑛 are the 𝑛 observations then the arithmetic mean 𝑥 ̅=(〖𝑥_1+𝑥〗_2+…+𝑥_𝑛)/𝑛=(∑_(𝑖=1)^𝑛▒𝑥_𝑖 )/𝑛
If 𝑓_𝑖 is the frequency of 𝑢_𝑖their mean is 𝑥 ̅=(〖〖𝑓_1 𝑢〗_1+𝑓_2 𝑢〗_2+…+〖𝑓_𝑘 𝑢〗_𝑘)/(𝑓_1+𝑓_2+…+𝑓_𝑘 )=(∑_(𝑖=1)^𝑘▒〖𝑓_𝑖 𝑢〗_𝑖 )/(∑_(𝑖=1)^𝑘▒𝑓_𝑖 ), 𝑘 = Distinct observation count
1. For Ungrouped Data (Method 2)
Take deviations from any arbitrary point “A”. Then 𝑥 ̅=𝐴+(∑_(𝑖=1)^𝑛▒𝑑_𝑖 )/𝑛 𝑑_𝑖=𝑥_𝑖−𝐴
If 𝑓_𝑖 is the frequency of 𝑢_𝑖 then 𝑥 ̅=𝐴+(∑_(𝑖=1)^𝑘▒〖𝑓_𝑖 𝑑〗_𝑖 )/(∑_(𝑖=1)^𝑘▒𝑓_𝑖 )=(∑_(𝑖=1)^𝑘▒〖𝑓_𝑖 𝑢〗_𝑖 )/(∑_(𝑖=1)^𝑘▒𝑓_𝑖 )
2. For Grouped Data (Method 1)
If 𝑓_𝑖 is the frequency of 𝑚_𝑖 (the mid value of the 𝑖^𝑡ℎ class interval) their mean 𝑥 ̅=(〖〖𝑓_1 𝑚〗_1+𝑓_2 𝑚〗_2+…+〖𝑓_𝑘 𝑚〗_𝑘)/(𝑓_1+𝑓_2+…+𝑓_𝑘 )=(∑_(𝑖=1)^𝑘▒〖𝑓_𝑖 𝑚〗_𝑖 )/(∑_(𝑖=1)^𝑘▒𝑓_𝑖 ), 𝑘 = Distinct observation count.
2. For Grouped Data (Method 2)
If 𝐴 is an arbitrary point and 𝑓_𝑖 is the frequency of 𝑚_𝑖 (the mid value of the 𝑖^𝑡ℎ class interval) their mean
𝑥 ̅=𝐴+(〖〖𝑓_1 𝑑〗_1+𝑓_2 𝑑〗_2+…+〖𝑓_𝑘 𝑑〗_𝑘)/(𝑓_1+𝑓_2+…+𝑓_𝑘 )=𝐴+(∑_(𝑖=1)^𝑘▒〖𝑓_𝑖 𝑑〗_𝑖 )/(∑_(𝑖=1)^𝑘▒𝑓_𝑖 ), 𝑘 = Distinct observation count, 𝑑_𝑖=𝑚_𝑖−𝐴.
N.B.: It is illeagal to download, distribute or display in public any part of this video production.
-
6:02:38
CLUJ
7 hours agoCHRISTMAS EVENING HYPE!! LETS HAVE FUN GAMING!!
29.9K6 -
LIVE
a12cat34dog
9 hours agoI AM FINALLY BACK :: PUBG: BATTLEGROUNDS :: RUMBLE NOW HAS GIFTED SUBS!!! [Merry Christmas] {18+}
112 watching -
3:55:42
STARM1X16
8 hours agoMerry Christmas Fortnite
56.6K7 -
2:45:33
Sgtfinesse
8 hours agoMerry Christmas Night
51.1K16 -
3:51:18
tacetmort3m
1 day ago🔴 LIVE - (MERRY CHRISTMAS) TIME TO SPREAD DEMOCRACY - HELLDIVERS 2 OMENS OF TYRANNY
27.4K2 -
12:42
Cooking with Gruel
23 hours agoBrown Butter Trifle with Salted Caramel and Cinnamon Apple
21.6K3 -
2:46
BIG NEM
11 hours agoDiscovering RAKIJA: The Holy Liquer of the Balkans
18.4K2 -
1:11:38
Film Threat
16 hours agoCHRISTMAS DAY CHILL STREAM WITH CHRIS GORE | Hollywood on the Rocks
139K30 -
14:22:40
The Quartering
1 day agoYule Log Christmas MAGA Edition With Memes! Come Hang Out!
229K29 -
38:41
MYLUNCHBREAK CHANNEL PAGE
1 day agoTimeline Begins in 1800? - Pt 1 & 2
108K62