1. 183. Geometrical Representation of the Linear Regression Model | Skyhighes | Data Science

    183. Geometrical Representation of the Linear Regression Model | Skyhighes | Data Science

    7
  2. 321. Common Objective Functions L2-norm Loss | Skyhighes | Data Science

    321. Common Objective Functions L2-norm Loss | Skyhighes | Data Science

    6
  3. 319. Graphical Representation of Simple Neural Networks | Skyhighes | Data Science

    319. Graphical Representation of Simple Neural Networks | Skyhighes | Data Science

    6
  4. 317. The Linear Model with Multiple Inputs | Skyhighes | Data Science

    317. The Linear Model with Multiple Inputs | Skyhighes | Data Science

    5
  5. 316. The Linear Model (Linear Algebraic Version) | Skyhighes | Data Science

    316. The Linear Model (Linear Algebraic Version) | Skyhighes | Data Science

    6
  6. 195. Test for Significance of the Model (F-Test) | Skyhighes | Data Science

    195. Test for Significance of the Model (F-Test) | Skyhighes | Data Science

    3
  7. 204. Making Predictions with the Linear Regression | Skyhighes | Data Science

    204. Making Predictions with the Linear Regression | Skyhighes | Data Science

    5
  8. 262. Relationship between Clustering and Regression | Skyhighes | Data Science

    262. Relationship between Clustering and Regression | Skyhighes | Data Science

    3
  9. 363. Adam (Adaptive Moment Estimation) | Skyhighes | Data Science

    363. Adam (Adaptive Moment Estimation) | Skyhighes | Data Science

    6
  10. 356. State-of-the-Art Method - (Xavier) Glorot Initialization | Skyhighes | Data Science

    356. State-of-the-Art Method - (Xavier) Glorot Initialization | Skyhighes | Data Science

    5